NONRESONANCE PARAMETRIC INTERACTIONS OF SURFACE WAVES
IN ISOTROPIC SOLID BODIES
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A solution in parametric approximation is given of the nonlinear interaction problem of Ray-

leigh surface waves propagating in a solid body with given elastic fields. Shortened equations
that govern the modulation cffect of the surface waves, and also expressions for the modula~

tion index in terms of the third-order elasticity constant, are obtained.

1. The generation of higher harmonics has only heen analyzed in literature out of the many nonlinear
effects which take place when surface waves are propagated in solid bodies. This, however, does not ex-
haust all the nonlinear effects; it is of some interest to study interactions between several surface waves
as well as the interaction between the surface waves with the interior elastic fields of the solid medium.

In the present article a theoretical analysis is carried out of the parametric interactions between Rayleigh
surface waves and the volume elastic fields which satisfy boundary conditions.

The analysis can be carried out by using asymptotic methods as its basis. To this end one has to
solve a system of nonlinear wave equations with appropriate boundary conditions.

The problem is formulated as follows: let on the solid body—vacuum interface a Rayleigh wave be
propagated in the direction of the x axis (the usual Cartesian coordinate system is used) which is uniform
in y. but nonuniform in z (the normal vector to the solid-hody surface is directed along the z axis). An ar-
bitrary external modulating field (satis{ying suitable boundary conditions} which changes slowly in space
and in time when compared with the oscillations of the points in the Rayleigh wave acts upon the solid body.
The problem is reduced to the finding of the complex amplitude of the Rayleigh wave, When Lagrange vari-
ables are used the system of nonlinear wave equations for this case is given by
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where K is the uniform-compression modulus. ¢ is the shear modulus, Tik is the nonlinear part of the
stress tensor, u, are the components of the displacement vector (the subscript 1 corresponds to x. 2 ~y,
3~z). The boundary conditionswhich consist of the absence of forces normal to the surface of the solid
body are given by [1]

Gy ny - 0 for z=20 (1.2)

where ny is the vector normal to the boundary of the solid elastic medium. In this case with normal in the
direction of z one has the relations

Ox; == Oy, = 0, = 0 (1.3)

where ojy is the complete stress tensor.
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By using (1.2), (1.3) and in view of the fact that the wave is uniform in y (thatis, 8/8y = 0) one can ob-
tain boundary conditions for z =0,

“*%”%+“—%ﬂ%=—% (1.4)

The problem is thus reduced to the solving of Eq. (1.1) with the boundary conditions (1.4) for a given
modulating field u™.

Before tackling this nonlinear problem the solution of the linear problem, that is, the solution of the
system (1.1 together with (1.4) in the case of a vanishing right-hand side, is written down in the following
form:
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k is the wave number, c; is the velocity of the longitudinal waves, ¢ the velocity of the displacement waves,
P, is the density of the undisturbed medium. For a wave which is uniform in y the conditions of the linear
problem are satisfied if

2, = 4,8 (s = fi*”;z) (1.6)

and the corresponding dispersion equation has a solution of the form
o == ¢k (1.7

where § is a constant value smaller than unity.
2. The solution of nonlinear interaction of a Rayleigh wave and a modulating elastic field is sought
in parametric form, namely

m (z, ?) = Rela, (x, e + ay(z, 9] D +u™ (3, 9, 2, 1) + p* wy (2.1

ug (z, t) = Relipyay (z, £) €% + ipya, (z, 1) e?lé@-50 +u™ (z, y, 2, 1) + p*w,

where ai(x, t) and a,(x, t) are slowly varying functions of x and t, i * is a dimensionless parameter in the
sense of the acoustic Mach number, (* :u/7\);wi is a residual term which takes into account the fact that
the approximate solution (2.1) is not exact. By inserting (2.1 in \1.1) and comparing the coefficients of
e“wt‘k’{) after expansion in Fourier series one can obtain the equations for Wi,
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where F"k are Fourier coefficients obtained by averaging the right-hand sides of Egs. (1.1). In the deriva-
tions of ¥, one makes use of the inequalities
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The coefficients F,) are given by the relations
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It follows from (2.2) that the differential operator acting on the left side on Wj is identical with the
corresponding differential operator for the linear problem. The function w; now changes "rapidly"” with z,
that is, the space scale of w, with respect to z is of the order of the wavelength A. The equations for w,
and w, form a quasilinear in 7z nonautonomous system. The forced solution of this problem can be obtained
as a superposition of solutions for separate components of the applied force on the right-hand side of Egs.
(2.2).

It was shown in the theory of asymptotic methods that the approximate solution (2.1) converges to the
actual solution if w. varies with respect to the "rapid" variables just the same as does the solution of the
linear problem. For this condition to be satisfied it is required that

wp = wier (2.5)

By substituting (2.5) into (2.2) an algebraic system for w;° can be obtained. namely

Ryy® + prey” = Q. Ryey® + pauy® - 0, (2.6)
The determinant for the system (2.6) vanishes. If nonaccumulation. that is, boundedness of w;° is re-

quired, and if the consistency condition of the system (2.6) is satisfied, the sought shortened equations for
slowly varying amplitudes a,(x, t) and a,(x, t} can be obtained,
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The relation (1.7) was taken into account when (2.7) was being derived. It was assumed when deriv-
ing (2.7) that the structure of the modulating waves with respect to z remains the same as for the linear
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problem but the amplitude changes "rapidly" in z.

3. The latter must be taken into account when deriving the averaged boundary conditions. To obtain

them one inserts (2.1) into (1.4). Comparing the terms of the order ¢* in the expressions thus derived one
can write the system for w; as
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The boundary conditions are written down for the surface z=0; the latter should be taken into account
when differentiating with respect to z in (3.1). The guantities $., in (3.1) are the corresponding Fourier
coefficients obtained when averaging the right-hand sides of (1. 45( over the rapid variables
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The selection of the system (2.2) is given as a sum of the general solution of the homogeneous sys-
tem and of a particular solution of the inhomogeneous system (with consistency conditions taken into ac-
count),
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where w' and w" are constant amplitudes of the order p*.
For (3.3) the boundary conditions (3.1) now become
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The structure of the quantities a, and a, is different in z. The determinant of the system (3.4) vanish-
es and its consistency condition may be regarded as shortened boundary conditions,
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where (8a/0z), and (8a,/87), are derivatives with z approaching 0.

4. Thus (2.7) together with (3.5) is a shortened formulation of the problem of the modulation of a Ray-
leigh surface wave by an arbitrary elastic field. The solution in the boundary layer is interesting in prac-
tice where the amplitudes of the modulated waves are considerable. By having z— 0, and considering 2.7)
under the condition (1.6) one is able to obtain
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The sought shortened equation which describes slow changes of the complex amplitude of the Rayleigh
wave acted upon by the modulating field u™® is given by
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The expressions for the coefficients r; are as follows:
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By adopting a complex amplitude as given by a = aoei‘p, equations are obtained for slowly varying
amplitudes and phases,
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When analyzing the system (4.3) one notices that in contrast to the three-dimensional waves [2] a
phase modulation as well as amplitude modulation occurs tof the same order of effect) when a Rayleigh wave
is propagated in the presence of a modulating field ur,n . To be able to analyze in detail a solution of the
system (4.3) some specific forms of the modulating fields will be considered such that the boundary condi-

tions (1.2) are satisfied.
Let the modulating field be a field of uniform deformationin a rod due to the tensile force P directed
along the rod axis. In this case the following relations are valid [1]:

m

ul ult p
- = % (c0s?6 — 5sin0), a—; = %(sin’ﬂ —5c0s?), o= == — EG (4.4)

where E is the Young modulus, ¢ is the Poisson coefficient, § is the angle between the direction of P and
the x axis, the angle between the 7 axis and P being equal to 90°. By inserting the relations (4.4) into the

system (4.3) and by integrating a solution of the form

© = o+ %,Ii [ry(cos?B — 55in20) + r, (sin?0 — scos? ) — rs3) (4.5)

can be obtained for the stationary state (t=ty+x/).

One notices when analyzing the above result that in the case of a uniform stress field there is no
amplitude modulation, and for a fixed L the phase of the Rayleigh wave is proportional to the pressure P.
This result is similar to the corresponding solution for three-dimensional waves {2]. If P varies in time,
one can obtain a solution in a similar manner. Let P =Pgt, then by using (4.4) a solution of 4.3) is obtained

in the form
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@ = Qo+ %‘ [r1(c0s®0 — 55in28) 4 ry (sin®6 — 5¢0s%0) — ar3) (t -+ 2—1;) (4.6)

In this case the phase of a Rayleigh wave changes as the square of distance; the full expression for the
oscillating term in (2.1) is

: P ' '
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— kL — 5= (r1c0s®0 — ry3sin®6 + rp sin®6 — rys cos? 6 — rsd)}

It follows from (4.7) that the frequency of a Rayleigh wave changes linearly with the path of the wave.

Let us now consider a sinusoidal P. Let P be a uniform standing wave in a rod, that is

P = P sink,rcosQt

where r is the radius vector, k,, is the wave number.

Integrating (4.3) and using (4.4) the following expression is obtained:
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It follows from (4.8) that a pure phase modulation of a Rayleigh wave takes place also in the case of
three-dimensional waves. However, some differences can also be pointed out. Unlike the three-dimension-
al waves the excitation and reception of Rayleigh waves can take place at any point of the surface of the
acoustic resonator. Therefore, in the case of modulation by standing low-frequency fields the modulation
index of Rayleigh waves depends on the coordinates of the points of excitation and of reception. The integra-
tion in (4.3) does not take place over the entire length of the resonator as was the case with three-dimen-
sional waves but between x and x,, where x and x, are the coordinates of the points of emission and recep-
tion of the Rayleigh waves. The solution for the wave phase is given by

¢ =@+ %‘lvi [ry (cos?8 — 6sin?8) = r, (sin®@ — 5cos?0) — rys] X
[sir:\é;l, cos (Qt - kpz,0080 + k,,ysin® 4- A™L) |- (4.9)
sin A*L

aer oS (Qf — knrycos0 4 k,ysin® + A"L)-I

where L is the distance traveled by the wave.

Let u™ be the field of normal elastic waves in a plate. It is known from [3] that such waves satisfy
the boundary conditions (1.2). Without loss of generality one considers the modulating field to be an anti-
svmmetric displacement wave in the plate. The frequency of oscillations in this wave is much smaller
than the frequency of the Rayleigh wave extending over the plate surface in the xy plane. In accordance
with [3] the components uim of the displacements are given in this case by

u;," = — uy" sinBsinuzcos (Qf — kncosbz = kysiny)
w,™ = uy™ cosOsinxz cos (Qt — kncosbz + kmsindy) (4.10)

where uom is the amplitude of the modulating wave, § is the angle between the x axis and the propagation
direction of the modulating wave, ® is the transversal number of the modulating wave which satisfies the
dispersion equation

x: 4 kp? == o¥el (4.11



By inserting (4.10) into {4.3) and integrating one finds solutions of the form

kmug Lgin AL
v AL

@ =@y + (ry —ry)sinBeos 0 sin(Qt — k,ysin6 — AL) (4.12)

where A=A~ is given in (4.8), and one also takes into account that ®b=7 , b is the plate thickness. It follows
from (4.12) that here pure phase modulation of the Rayleigh wave also takes place. On the whole there is no
modulation for angles § =0and 90°. In a similar manner one can analyze modulation by using other forms
of modulating fields such that the boundary conditions (1.2) are satisfied. It is noted that in a majority of
cases in practice the amplitude-modulation effect described by the first equation of the system (4.3) is not
attained. In special cases when the modulating wave falls on the surface z=0 at an angle this effect will
take place. For example, let a longitudinal elastic wave fall on the surface z=0 at an angle 6 to the z axis
from a solid medium. It is assumed that the length of the Rayleigh wave path is smaller than the width of
the front of the modulating wave and that the phase difference in the modulating wave between the emitting
and the reception points of the Rayleigh waves can be ignored. In this case the total displacement u™ can
be represented in the form [1]

um™ = (um g™ - ul 0, M 4w (an,) ) & (4.13)
where ng, ng, and n; are the unit vectors in the direction of the incoming longitudinal wave, the reflected
longitudinal and the reflected displacement wave respectively, u™, u;™, and uf™ are the amplitudes of the
corresponding displacements, and kg, kp and k, are the wave vectors, a is the unit vector in the direction
of z. The absolute values of the wave vectors are given by ky=k; = Q/c. ktzﬂ/ct, and the angles 6,67, and
6; are related by

8, = 0;, sinB, = sin (B4c/c))
Using (4.13) one can write the expression for 8u}/ox as
ou,"oz = ko (ug™ — u;™) sinB,cos0; + /,u,"k (cos?0, — sin?0,)] sinQ¢ (4.14)

where the amplitudes u™ are given by the expressions

2 . T .
m O sin 204 sin 26y — ¢, cos? 26, um 2¢,¢¢ sin 26, cos 280,

=u - - =ur - —
t 0 ¢%sin 20 sin 200 - ¢ cos2 26, * t © ¢2sin 28; sin 28, -- ¢,2cos? @

By inserting (4.14) in the first of Eqs. (4.3) and integrating, one obtains a solution in the form

= ot lko (u" + up?) cos? By + w7k, cos? 6, sin 6] 2RI i (Qt — 95) (4.15)
One obtains the expression
du, ™oz = [ky (ug™ + u™) cos®0y + u*k, cos?0,sind,] sinQt (4.16)
for au)/oz of 4.13).
The solution for the phase is given by
ap = a* exp {[ko (um — u) sin 0pcos B + ulk, —!2—(cos2 8, — sin® 9,)]%’%%/3—”siu (Qt — Q—D—L>} 14.17)

In accordance with (4.15) and (4.17), both phase and amplitude modulation take place when a Rayleigh
wave is propagated in the field of incident longitudinal waves, of reflected longitudinal and of transversal
waves. The depth of the amplitude modulation and the index of the phase modulation depend in different ways
on the amplitudes of the modulating waves and their angular relations.

It is noted that the effect of nonresonance parametric interaction between surface waves and interior
elastic fields in a solid medium can be employed for parametric display and for estimating the intensity of
these fields.
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